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A new formula for the coefficients of
Gaussian polynomials

Dorin Andrica and Ovidiu Bagdasar

Abstract

We deduce exact integral formulae for the coefficients of Gaussian,
multinomial and Catalan polynomials. The method used by the authors
in the papers [2, 3, 4] to prove some new results concerning cyclotomic
and polygonal polynomials, as well as some of their extensions is applied.

1 Introduction

Let n be a positive integer. In [4] we have studied the polygonal polynomials

Pn(z) = (z − 1)(z2 − 1) · · · (zn − 1), n = 1, 2, . . . , (1)

having integer coefficients and degree n(n+1)
2 . Clearly, for each k = 1, . . . , n,

the roots of zk − 1 are the complex coordinates of the vertices of the regular
k-gon centered in the origin and having 1 as a vertex. Consequently, the roots
of Pn(z) are the complex coordinates of the vertices, with repetitions, of the
regular k-gons, for k = 1, . . . , n.

For positive integers m and r, the Gaussian polynomial is defined by(
m

r

)
z

=
Pm(z)

Pr(z)Pm−r(z)
=

{
(zm−r+1−1)···(zm−1)

(z−1)···(zr−1) r ≤ m
0 r > m.

(2)

Key Words: Gaussian polynomial, multinomial polynomial, Catalan polynomial, polyg-
onal polynomial, integral formula.
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While formula (2) may seem to involve a rational function, the division actually
is exact in the ring Z[z], and it generates a polynomial of degree r(m − r).
There are numerous identities involving Gaussian polynomials, many of which
are similar to those concerning the classical binomial coefficients.

The factorization of (2) in terms of cyclotomic polynomials was given by
Knuth and Wilf [9], while Chen and Hou [7] showed that all the roots of the
Gaussian polynomial are distinct. The factorization is(

m

r

)
z

=

m∏
k=1

[Φk(z)]
bm/kc−br/kc−b(m−r)/kc

, (3)

where Φk(z) denotes the kth cyclotomic polynomial.
Both the polygonal and Gaussian polynomials are special cases of a general

class of polynomials introduced and studied in [3], namely

F z1,...,znm1,...,mn
(z) =

n∏
k=1

(zmk − zk), (4)

where n ≥ 2 and m1,m2, . . . ,mn are positive integers, while z1, z2, . . . , zn are
complex numbers with |z1| = |z2| = · · · = |zn| = 1.

Writing the Gaussian polynomial in algebraic form(
m

r

)
z

=

r(m−r)∑
j=0

C
(m,r)
j zj , (5)

the coefficient C
(m,r)
j has many combinatorial and algebraic interpretations.

First, it represents the number of partitions of number j whose Ferrers diagram
fits into a r × (m − r) rectangle. Also, if δ = δ1δ2 · · · δr is a r-subset of [n],

and σ(δ) =
∑r
i=1 δi (weight of δ), then the coefficient C

(m,r)
j is the number of

r-subsets of [n] with weight j + r(r+1)
2 [10].

Also, it is known that the sequence C
(m,r)
j is unimodal. This property has

first been stated by Cayley in 1856 and proved by Sylvester in 1878. The
first constructive proof was given in 1990 by O’Hara [10]. Some generalized
Gaussian coefficients were also found to be unimodal in 1992 by Kirillov in [8].

Furthermore, Butler [6] established that
(
m
r

)
z

is a log-concave sequence of

polynomials, but Stanley [11] showed that C
(m,r)
j , j = 0, . . . , r(m− r), is not

always log-concave (see, e.g.,
(
4
2

)
z

= 1 + z + 2z2 + z3 + z4).
In this paper, we first derive an exact integral formula for the coefficients of

the Gaussian polynomial, then obtain analogous formulae for the multinomial
and the Catalan polynomial. These polynomials can also be recovered as
particular instances of (4). Such integral formulae could be important for
determining the asymptotic behaviour of the coefficients [12].



A NEW FORMULA FOR THE COEFFICIENTS OF GAUSSIAN
POLYNOMIALS 27

2 A formula for the coefficients of Gaussian polynomials

Let z = cos 2t+i sin 2t for t ∈ [0, π]. For a positive integer k, using de Moivre’s
formula and Euler’s exponential notation of complex numbers in polar form,
we obtain:

zk − 1 = (cos 2kt− 1) + i sin 2kt = 2ieikt sin kt. (6)

Therefore, the Gaussian polynomial may be written as(
m

r

)
z

=
(2i)r

∏r
k=1 e

i(m−r+k)t sin(m− r + k)t

(2i)r
∏r
k=1 e

ikt sin kt

eir(m−r)t
r∏

k=1

sin(m− r + k)t

sin kt
.

For what follows it is convenient to define the function

Λmr (t) =

r∏
k=1

sin(m− r + k)t

sin kt
. (7)

We now derive a new formula for the coefficients of the Gaussian polynomial.

Theorem 1. The coefficients of the polynomial
(
m
r

)
z

are given by

C
(m,r)
j =

1

π

∫ π

0

Λmr (t) · cos [r(m− r)− 2j] tdt, j = 0, . . . , r(m− r). (8)

Proof. Using formula (6) and the algebraic form of
(
m
r

)
z
, it follows that

(
m

r

)
z

=

r(m−r)∑
k=0

C
(m,r)
k zk = Λmr (t) · eir(m−r)t. (9)

Using complex numbers in polar form, for j = 0 . . . , r(m− r), we have

C
(m,r)
j +

∑
k 6=j

C
(m,r)
k zk−j = z−jΛmr (t) · eir(m−r)t = Λmr (t) · ei[r(m−r)−2j]t,

and integrating this relation over the interval [0, π] we get the desired result.

In addition, the following relations are obtained∫ π

0

Λmr (t) · sin [r(m− r)− 2j] tdt = 0, j = 0, . . . , r(m− r).
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Notice that the integral in formula (8) is not singular at t = 0, since we have

lim
t→0

Λmr (t) =

r∏
k=1

m− r + k

k
=

(
m

r

)
.

Remark 2. By Theorem 1 one can easily show that the polynomial
(
m
r

)
z

is
palindromic. Indeed, for j = 0, . . . , r(m− r), one obtains

C
(m,r)
r(m−r)−j =

1

π

∫ π

0

Λmr (t) · cos [r(m− r)− 2(r(m− r)− j)] tdt

=
1

π

∫ π

0

Λmr (t) · cos [−r(m− r) + 2j] tdt = C
(m,r)
j . (10)

One can also obtain elegant formulae for the middle coefficients.

Proposition 3. The middle coefficient of the polynomial
(
m
r

)
z

is given by:
1. If r(m− r) = 2k, then

C
(m,r)
k =

1

π

∫ π

0

Λmk (t) dt.

2. If r(m− r) = 2k + 1, then

C
(m,r)
k = C

(m,r)
k+1 =

1

π

∫ π

0

Λmk (t) · cos tdt.

A simple formula for the sum of these coefficients can also be obtained.
The sum of coefficients for the Gaussian polynomial

(
m
r

)
z

is

r(m−r)∑
j=0

C
(m,r)
j =

(
m

r

)
.

Indeed, for k = 1, . . . , r, we have the following limits

lim
z→1

zm−r+k − 1

zk − 1
=
m− r + k

k
,

and one obtains that

r(m−r)∑
j=0

C
(m,r)
j = lim

z→1

(
m

r

)
z

=

r∏
k=1

m− r + k

k
=

(
m

r

)
.
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The well-known formula for the sum of cosines of arguments in arithmetic
progression is useful in some further computations

M∑
j=0

cos(a+ jd) =
sin (M+1)d

2

sin d
2

cos

(
a+

Md

2

)
, (11)

where M is a positive integer and a, d are real numbers. In particular, when
d = −2t and a = Mt, the following formula is obtained

M∑
j=0

cos (M − 2j) t =
sin(M + 1)t

sin t
. (12)

As a consequence, we can show that the following integral formula for the
binomial coefficient holds(

m

r

)
=

1

π

∫ π

0

Λmr (t) ·
r(m−r)∑
j=0

cos [r(m− r)− 2j] tdt

=
1

π

∫ π

0

Λmr (t) · sin(r(m− r) + 1)t

sin t
dt, (13)

where we have used formula (12) for M = r(m− r).

3 A formula for the coefficients of the multinomial poly-
nomials

Let s,m,m1,m2, . . . ,ms be positive integers such that m1+m2+· · ·+ms = m.
The multinomial polynomial is defined by the formula:(

m

m1, . . . ,ms

)
z

=
Pm(z)

Pm1
(z)Pm2

(z) · · ·Pms
(z)

. (14)

Clearly, for s = 2 and m1 = r, one obtains the Gaussian polynomial. While
the formula (14) seems to involve a rational function, the division actually is
exact in Z[z].

Denoting by M the degree of this polynomial, we obtain

M =
m(m+ 1)

2
−

s∑
j=1

mj(mj + 1)

2

=
1

2

[
m2 − (m2

1 +m2
2 + · · ·+m2

s)
]

(15)

=
∑

1≤k<l≤s

mkml.
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The factorization of the multinomial polynomial in irreducible factors involv-
ing the cyclotomic polynomials, was given by Chen and Huo in [7, Lemma 1],
and naturally extends formula (3).

Proposition 4. The multinomial polynomial (14) can be factorized as(
m

m1, . . . ,ms

)
z

=

m∏
k=1

[Φk(z)]
bm/kc−bm1/kc−bm2/kc−···−bms/kc ,

where Φk(z) denotes the kth cyclotomic polynomial.

From this result we can obtain an interesting identity concerning the degree
of this polynomial, which involves the floor function.

Theorem 5. Let m,m1,m2, . . . ,ms be positive integers which satisfy the iden-
tity m = m1 +m2 + · · ·+ms. The following relation holds:

m∑
k=1

ϕ(k) (bm/kc − bm1/kc − bm2/kc − · · · − bms/kc) = M. (16)

Proof. The cyclotomic polynomial Φk(z) has degree ϕ(k). By Proposition 4,
the left-hand side of (16) represents the degree of the multinomial in the
factorization form, while the right-hand side is the degree.

In particular, from the factorization of the Gaussian polynomial (3), we
obtain the following result.

Corollary 6. Let m ≥ r be positive integers. The following identity holds:

m∑
k=1

ϕ(k) (bm/kc − br/kc − b(m− r)/kc) = r(m− r). (17)

In algebraic form, the polynomial
(

m
m1,...,ms

)
z

can then be written as(
m

m1, . . . ,ms

)
z

=

M∑
j=0

Cm1,...,ms

j zj . (18)

It is known that the coefficients Cm1,...,ms

j , j = 0, . . . ,M , form a unimodal
sequence [1, 5]. However, as seen even in the particular case of Gaussian
polynomials, this sequence is not always log-concave.

We now deduce an exact integral formula for the coefficients of the multi-
nomial polynomials. For this purpose it is convenient to consider the function

Λmm1,...,ms
(t) =

∏m
k=1 sin kt∏s

j=1

(∏mj

k=1 sin kt
) . (19)
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Theorem 7. The coefficients of the polynomial
(

m
m1,...,ms

)
z

are given by

Cm1,...,ms

j =
1

π

∫ π

0

Λmm1,...,ms
(t) · cos (M − 2j) tdt, j = 0, . . . ,M. (20)

Proof. By formula (6) we have

Pn(z) = (2i)nei
n(n+1)

2 t
n∏
k=1

sin kt, (21)

hence, by using (15), the multinomial polynomial can be written as(
m

m1, . . . ,ms

)
z

=
Pm(z)

Pm1(z) · · ·Pms(z)
=

(2i)mei
m(m+1)

2 t
∏m
k=1 sin kt∏s

j=1(2i)mjei
mj(mj+1)

2 t
∏mj

k=1 sin kt

= ei
1
2 [m2−(m2

1+···+m
2
s)]t

∏m
k=1 sin kt∏s

j=1

(∏mj

k=1 sin kt
)

= eiMtΛmm1,...,ms
(t). (22)

Combining with the algebraic form, we obtain the following identity(
m

m1, . . . ,ms

)
z

=

M∑
k=0

Cm1,...,ms

k zk = eiMtΛmm1,...,ms
(t).

It follows that

Cm1,...,ms

j +
∑
k 6=j

Cm1,...,ms

k zk−j = z−jeiMtΛmm1,...,ms
(t), j = 0, . . . ,M.

Considering z = cos 2t + i sin 2t and integrating over the interval [0, π], we
obtain the desired result.

In addition, it also results that∫ π

0

Λmm1,...,ms
(t) · sin (M − 2j) tdt = 0, j = 0, . . . ,M.

Notice that the integral in formula (20) is not singular, since we have

lim
t→0

Λmm1,...,ms
(t) =

m!∏s
j=1mj !

=

(
m

m1, . . . ,ms

)
.

Similarly to the Gaussian polynomials, we have the following properties.
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Remark 8. By Theorem 7 one can easily show that the polynomial
(

m
m1,...,ms

)
z

is palindromic. Indeed, for j = 0, . . . ,M , one obtains

Cm1,...,ms

M−j =
1

π

∫ π

0

Λmm1,...,ms
(t) · cos (M − 2(M − j)) tdt

=
1

π

∫ π

0

Λmm1,...,ms
(t) · cos (−M + 2j) tdt = Cm1,...,ms

j . (23)

One can also obtain explicit integral formulae for the middle coefficients.

Proposition 9. The middle coefficient of
(

m
m1,...,ms

)
z

is given by the following

formulae (depending on the parity of M):
1. If M = 2k, then

Cm1,...,ms

k =
1

π

∫ π

0

Λmm1,...,ms
(t) dt. (24)

2. If M = 2k + 1, then

Cm1,...,ms

k = Cm1,...,ms

k+1 =
1

π

∫ π

0

Λmm1,...,ms
(t) · cos tdt. (25)

The sum of coefficients of the multinomial polynomial
(

m
m1,...,ms

)
z

is

M∑
j=0

Cm1,...,ms

j =

(
m

m1, . . . ,ms

)
, (26)

obtained by taking the limit as z → 1 of
(

m
m1,...,ms

)
z
.

From Theorem 7, we can also show that the following integral formula for
the multinomial coefficients holds(

m

m1, . . . ,ms

)
=

M∑
j=0

1

π

∫ π

0

Λmm1,...,ms
(t) · cos (M − 2j) tdt

=
1

π

∫ π

0

Λmm1,...,ms
(t) ·

 M∑
j=0

cos (M − 2j) t

 dt

=
1

π

∫ π

0

Λmm1,...,ms
(t) · sin(M + 1)t

sin t
dt, (27)

where we have used the identity (12).
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4 A formula for the coefficients of Catalan polynomials

For a positive integer m, the m-th Catalan polynomial is defined by

Qm(z) =
z − 1

zm+1 − 1

(
2m

m

)
z

=
z − 1

zm+1 − 1
· P2m(z)

P 2
m(z)

, (28)

having degree m(m− 1) and at least m− 1 irreducible factors [7].
Setting m1 = m2 = m in formula (22), we obtain(

2m

m

)
z

= eim
2t

∏2m
k=1 sin kt

(
∏m
k=1 sin kt)

2 .

In what follows we shall denote for simplicity

Ψm(t) =
sin t

sin(m+ 1)t
Λ2m
m (t).

Theorem 10. The coefficients of the polynomial Qm(z) are given by

cmj =
1

π

∫ π

0

Ψm(t) · cos [m(m− 1)− 2j] tdt, j = 0, . . . ,m(m− 1). (29)

Proof. In exponential notation, Catalan polynomials have the expression

Qm(z) =
(2i)eit sin t

(2i)ei(m+1)t sin(m+ 1)t
eim

2t

∏2m
k=1 sin kt

(
∏m
k=1 sin kt)2

= eim(m−1)t sin t

sin(m+ 1)t
Λ2m
m (t)

= eim(m−1)tΨm(t).

Writing the Catalan polynomial Qm(z) in algebraic form it follows that

Qm(z) =

m(m−1)∑
k=0

cmk z
k = eim(m−1)tΨm(t).

Isolating the coefficient cmj we deduce that

cmj +
∑
k 6=j

cmk z
k−j = z−jeim(m−1)tΨm(t), j = 0, . . . ,m(m− 1).

Considering z = cos 2t + i sin 2t and integrating over the interval [0, π], the
desired result follows.
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In addition, we also obtain the relations∫ π

0

Ψm(t) · sin [m(m− 1)− 2j] tdt = 0, j = 0, . . . ,m(m− 1).

Also, notice that the integral in formula (29) is not singular, since we have

lim
t→0

Ψm(t) =
1

m+ 1

(
2m

m

)
,

which represents the m-th Catalan number.

Remark 11. By Theorem 10 one can easily show that the Catalan polynomial
is palindromic. Indeed, for j = 0, . . . ,m(m− 1), one obtains

cmm(m−1)−j =
1

π

∫ π

0

Ψm(t) · cos [m(m− 1)− 2(m(m− 1)− j)] tdt

=
1

π

∫ π

0

Ψm(t) · cos [−m(m− 1) + 2j] tdt = cmj . (30)

Also, we can deduce a simple integral formula for the middle coefficient.

Proposition 12. The middle coefficient of Qm(z) is given by:

cmm(m−1)
2

=
1

π

∫ π

0

Ψm(t) dt.

The sum of coefficients of Qm(z) is given by the formula

m(m−1)∑
j=0

cmj =
1

m+ 1

(
2m

m

)
. (31)

From Theorem 10 and (31), we obtain the following integral formula for the
m-th Catalan number:

1

m+ 1

(
2m

m

)
=

m∑
j=0

1

π

∫ π

0

Ψm(t) · cos [m(m− 1)− 2j] tdt

=
1

π

∫ π

0

Ψm(t) · sin[m(m− 1) + 1]t

sin t
dt,

where we have used the identity (12) for M = m(m− 1).
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